Biological Machines, Cell Mechanics and Nanotechnology

王歐力 助理教授 Oliver I. Wagner, PhD Assistant Professor

National Tsing Hua University Institute of Molecular & Cellular Biology College of Life Science

The eukaryotic cell

An early view of the cytoskeleton by W. Flemming (1879)

"What are those wispy structures in the cytoplasm?"

Cytoskeleton of **cartilage cells** described as "threads" ('*Fäden'*)

Flemming, W., Arch. Mikrosk. Anat. 16, 302-436 (1879)

Flemming (when he looked at **epithelia cells**): "On reaching the plasma, one sees nothing at all."

Cytoskeletal elements drawn to scale

Howard, Mechanics of Motor Proteins, 1st Ed.

The Cytoskeleton

- Important for cell shape and cell stiffness
- Brings organelles into their correct positions
- Highway for molecular motors
- \Rightarrow occupies lots of space!

The cytoskeleton drives internal movements

1

2

- Separation of chromosomes
- Streaming of cytosol (plant cells)
- Transport of membranous vesicles:
 - Synaptic vesicle transport in neurons
 - Endo- and exocytosis
 - <u>Mitochondria movement</u>
 - RNA-granules
 - Other "cargo"

3 basic cytoskeletal elements

• Cytoskeleton is composed of **3 types** of fibers which are all <u>polymers</u> built from **globular protein subunits**

• The fibers can be **distinguished by** their **diameter**

Actin: twisted, two-stranded (pearl-string like) structure ⇒ cell shape and highway for molecular motors (cargo transport) MT: hollow cylinder formed by protofilaments made of tubulin-subunits ⇒ positioning of organelles; form flagella; chromosome separation; highway IFs: rope-like structure ⇒ cell shape and cell elasticity

Cytoskeletal fibers also differ in their mechanical properties

Based on their specific structures, the 3 types of cytoskeletal polymers <u>exhibit</u> also <u>different elastic properties</u>

- Microtubules, actin and intermediate filaments (all the same concentrations) were exposed to shear force in a *elastometer* and the <u>resulting degree of stretch was measured</u>
 - With increasing deforming force, <u>micro-</u> <u>tubules are the first</u> which cannot resist the strain and start <u>to break</u> following actin
 - <u>IFs</u> are the <u>most flexible</u> filaments which resist large deformations

P. Janmey, JCB, 1991

Microtubule-based motors

"External motors": flagella and cilia

The <u>bending sperm flagella pushes against the surrounding</u> <u>fluid</u> propelling the cell forward

The bacterial flagellum motor

... very different from flagella found in eukaryotes

Ultrastructure of Cilia and Flagella

The bacterial flagellum motor

Composed of **20 proteins** while **40 genes** needed to make the motor and its flagellum

Microtubules are stiff and breakable

- Microtubules are polymers composed of globular tubulin subunits forming a <u>stiff</u> and <u>hollow cylinder</u>
- This stiff and inflexible mechanical property allows microtubules to push chromosomes apart or to form and move long flagella

P. Janmey, JCB, 1991

Measuring nanoscale MT dynamics

- <u>MT-attached bead</u> is centered via an **optical trap** (highly focused infrared laser beam) keeping the plus-end in contact with a **microfabricated barrier**
- The light blue trap serves to orient the MT perpendicular to the barrier wall
- Deflection of the bead reflects protofilament length fluctuations at the MT plus-end
- A different setup similarly measures MT plus-end fluctuations via bead deflections
- Here the MT is held in position by the microfabricated structure

Gardner et al., 2008, Curr. Opin. Cell Biol.

Measuring nanoscale MT dynamics

- Bead attached to the microtubule lattice
- As MT depolymerizes bead deflection is measured (arrow: resisting force of bead)
- Bead linked to the plus-end via a specific MT-binding protein
- During MT fluctuations, the bead is pulled away while bead deflection is measured

Gardner et al., 2008, Curr. Opin. Cell Biol.

Optical trap setups are indeed sophisticated

Optical trap setups are indeed sophisticated

Cytoplasm squeezed out of a squid giant axon and observed with a microscope

Axonal trafficking

Synaptic vesicles, dense core vesicles

(neuropeptides), mitochondria, RNAgranules etc. move along microtubule tracks attached to molecular motors

Movie v20-02-vesicle_transport.mov

Model of kinesin-based vesicle transport

- Kinesins bind via their **globular** *motor* **domain** to <u>microtubules</u> while the **globular** *tail* **domain** is connected to the <u>vesicle</u>
- The vesicle connection is mediated by kinesin receptor proteins (linker proteins)

3 major types of **KIFs** (<u>kinesin</u> <u>superfamily proteins</u>) exist based on the <u>position of the</u> <u>motor domain</u>:

1) **NH**₂-terminal motor domain type

2) Middle motor domain type

3) **COOH**-terminal motor domain

14 classes exist:

- 11 classes for N-kinesins
- (16 family members)
- 2 classes of C-kinesins
- 1 M-kinesin class (KIF2)

Vesicle movement requires the motor protein kinesin and ATP

- Kinesin I is a 380 kDa dimer composed of two heavy chains and one light chain
- The **globular head domain** binds to the microtubule and <u>converts chemical energy</u> (from ATP hydrolysis) <u>into mechanical energy</u> (to move along the MT)
- The globular tail domain binds to the vesicle via adaptor proteins

Kinesin's directionality is controlled by a flexible neck linker

- Kinesin I exerts a force of 6 pN (piconewton) to pull a vesicle thru the cytoplasm
- Step size is 8 nm which matches the distance between two tubulin subunits in the MT
- Processivity is a term defining the distance a kinesin walks without detaching

Vale, 2003, Cell

KIF5 = Kinesin 1 KIF3 and KIF17 = Kinesin 2 KIF1A = Kinesin 3

Table 1 Family, subfamily and member names of kinesin superfamily proteins								
Family name ¹⁹	Class	Previous family name ^{14,147}	Subfamily name	Member names in mammals	Examples of nonmammalian members*			
Kinesin 1	N-1	KIF5 (KHC, Kinesin I, Conventional kinesin)	KIF5	KIF5A, KIF5B KIF5C	[‡] KHC, [§] UNC-116			
Kinesin 2	N-4	KIF3 (Kinesin II) Osm3/KIF17	KIF3 KIF17	KIF3A, KIF3B, KIF3C KIF17	^{\$} KRP-85/95, KRP85/95 ^{\$} OSM-3			
Kinesin 3	N-3	Unc104/KIF1 KIF13	KIF1 KIF13	KIF1A, KIF1Bα, KIF1Bβ, KIF1C KIF13A, KIF13B	[§] UNC-104			
Kinesin 4	N-5	KIF4	KIF4	KIF4A, KIF4B, KIF21A, KIF21B	[¶] Chromokinesin			
Kinesin 13	Μ	KIF2	KIF2	KIF2A, KIF2B, KIF2C	#XKCM1			
Kinesin 14	C-1 C-2	Ncd/Kar3/KIFC1 KIFC2/C3	KIFC1 KIFC2/C3	KIFC1 KIFC2, KIFC3	[‡] NCD, **Kar3			

Using the optical trap to determine kinesins stepping behavior

- Kinesin bound to a bead
- Bead kept in position by an **optical trap** (focused infrared laser-beam)
- Bead <u>position determined</u>
 by <u>photodiode detector</u> (upper trace)
- <u>Opposing</u> and constant <u>force</u> (6.5 pN) <u>applied</u> just behind the bead (by optical trap)
- After kinesin moves, **feedback loop** <u>adjusts</u> the <u>bead position</u> to its original position in the trap (lower trace)
- Step size of kinesin is 8 nm reflecting the <u>spacing of tubulin</u> <u>dimers</u> in the protofilament

Force dependent kinesin stepping

- Under <u>zero</u> to very low <u>load</u> kinesin exhibits <u>Brownian motion</u> only and turns around its own axis (no stepping measurable)
- Discrete 8 nm steps occur under moderate loads
- <u>Increasing loads</u> lead to occasional **detachments**
- **Dwell time** (or limp factor) is the pausing time at which no steps <u>occur</u>

Kinesin's speed depends on the applied force and the presence of ATP:

- At (low) load, the speed slows down => there is a **force rate-limiting step**
- The motor should not dissociate from the filament: one head must be always attached
- Speed/Force curve is <u>almost linear</u> that can explain that a second step (at higher load) is rate-limiting (crossbridge model; now called hand-over hand model)

Powerstroke model

- In the powerstroke model the motor has an **elastic element** (a spring) which <u>can store</u> <u>mechanical energy</u>
- For <u>kinesins</u> this spring might be the **neck domain** or for <u>myosin</u> the light chain domain or **lever arm**
- Strain is produced by a conformational change in the crossbridge
- The motor's **force** is the <u>tension</u> <u>in the spring</u> while the **relaxation** is the <u>driving force for</u> the <u>motion</u>
- ATP-binding detaches the motor

Force generation upon motor-filament interaction

- Energy released by <u>ATP hydrolysis</u> leads to <u>stretching</u> of an **elastic element** between cargo and fiber
- Resulting motion depends on the resistance of the cargo or fiber

Motor-filament interactions in cells

In order to generate force or tension, a motor must be fixed to an "attachment" domain

Special types of kinesins: monomeric and bipolar kinesins

• KIF1A is a monomeric kinesin: main synaptic vesicle transporter in neurons

Model for KIF1A monomer to dimer transition by self-folding of neck-linkers

- When UNC-104/KIF1A is sparsely distributed on an organelle membrane, the self-folded state is favored over the unfolded state
- Self-folded UNC-104/KIF1A monomers move very slowly and **non-processively** with some <u>plus end-directed biased</u> <u>diffusion</u>

- When UNC-104/KIF1A is <u>clustered in</u> <u>lipid rafts</u>, **unfolded** monomers are recruited into dimers (shifting the previous equilibrium)
- Dimerized UNC-104/KIF1A undergo <u>fast</u> <u>processive</u> motility and generate maximal force

Protein engineering for functional analysis of motor domains

E

Kinesins and neurodegenerative diseases

• Tau is important for <u>binding of kinesins to MT</u> (**low tau conc.**) and <u>unbinding from</u> <u>MT</u> (**high tau**)

• High tau facilitates directional reversal of dynein

• In degenerating neurons, the <u>gradient of tau is reversed</u> that <u>binding of kinesins to</u> <u>proximal MTs is inhibited</u> **leading to neurodegeneration** (inhibited cargo transport)

dy	Kinesin binds	Healthy neuron	Kinesin unbinds	0
Cell Bo			Dynein binds	5555
	Kinesin cannot bind	Degenerating neuron		
	Low	elative tau concentration	High	

Cytoskeleton-based molecular motors and nanotechnology

Molecular sorting, concentrating and purification using biomolecular motors

Problems for autonomous nanoscale transport of materials along nanochannels: <u>Microtubules frequently change directions</u> => need for **rectifier** (direction adjuster)

Rectifier system for autonomous transport of microfabricated structures in microfluidics system

Lin et al., 2006, Small

Biomolecular motor-driven protein sorting and concentrating

Applications:

- Protein purification processes on the nano- to micrometer scale level
- Analyte concentrations in the nM to pM range
- <u>Ultrasensitive screening</u> and **bio-detection** for **diagnostic applications**

Nano-biomachine powered by self-supplying ATP

- <u>ATP can be generated from ADP</u> by the enzyme **pyruvate kinase** (PK)
- P_i from PEP (phosphoenol pyruvate) transferred to ATP (PEP => pyruvate)

Nano-biomachine powered by self-supplying ATP

- Nano-biomachined moved for 75 minutes at (almost) constant velocity
- Without the self-supplying system the speed of MTs decreased to zero after 20 min

Molecular sorting, concentrating and purification using biomolecular motors

Using **electric fields** to <u>control the direction</u> of <u>material transport</u> in MEMS

- 800 nm deep nanochannels made by <u>E-beam lithography</u> and wet etching techniques
 - Channels are coated with kinesin (green) and microtubules (red) flown inside
 - An <u>electrical field</u> (35 kV/m) can be <u>applied</u>

Microscopic image of <u>fluorescently labeled MTs</u> in nanochannels Molecular sorting, concentrating and purification using biomolecular motors

A simple nano-factory

• Nano-factory for product synthesis, sorting and quality control

Goal: blue cargo X should react with yellow cargo Y

to become a **new product (green)** that will be transported by the **red motor**

• Cargo: Protein, biochemical substance, DNA oligomer etc.

Medical applications for autonomous nano-factories

Lab-on-a-chip device (powered by molecular motors) for autonomous sorting and purification of blood components

Antibody-tagged shuttles capture and separate target molecules in otherwise undetectable low quantities in an analyte

Molecular motors play different roles in interphase and mitotic cells

molecular motors

MTs push chromosomes to the daughter cells

Mitosis

Microtubules can attach to chromosomes and pull them apart

During cell division the complete DNA material has to be duplicated and than distributed into two cells

Microtubules can attach to chromosomes and pull them apart

Microtubules can attach to chromosomes and pull them apart

Three distinct sets of MT in the mitotic apparatus

- Aster MT: radiate out of the centrosome up to the cell cortex: position the spindle
- Kinetochore MT: part of the spindle; attach to centromeres of chromosomes
- Polar MT: overlap with opposite polar MT; do not connect to kinteochores

Cytosolic and mitotic kinesins

- <u>Cytosolic</u> **Kinesin I** (conventional kinesin) transports **organelles** (as lysosomes) while **KIF1A** transports **synaptic vesicles** and **KIF1B mitochondria** in axons
- Mitotic kinesins:
 - Kinesin-4 (Chromokinesin): links <u>chromosome arms</u> to polar MTs
 - Kinesin-5 (BimC): involved in spindle pole separation
 - Kinesin-7 (CENP-E): links chromosome centromeres to astral MTs
 - Kinesin-13 (MCAK): depolymerizes mitotic MTs

Prometaphase events

Alignment of chromosomes in the equatorial plate: [1] Highly dynamic <u>MTs hit</u> <u>kinetochore</u> (promoted by G protein Ran-GTP) [2] **Dynein/dynactin** moves chromosome to spindle pole [3] <u>If</u> other <u>free kinetochore</u> <u>is occupied</u> chromosome is *bi-oriented* (strong tension!)

> • While dynein pulls, kinesin-13 (MCAK) induces depolymerization

• Kinesin-7 (CENP-E) keeps growing (+) end attached

• **Kinesin-4** (chromokinesin) anchors chromosome to the <u>polar MTs</u>

Anaphase A and B events Anaphase A: • Dynein releases from the centromere and moves to the pole

• Kinesin-13 depolymerizes spindel MTs at (+) end *and* (-) end

Anaphase B:

• [B1] *Anchored* dynein pulls on **astral MTs** to separate spindle poles

• [B2] Bipolar **kinesin-5** (BimC) pushes on **polar MTs** to separate the poles

> Animation a20-03-microtubule _dynamics.swf